

YOUR WORLD, OUR LIGHT

Measurement Transducer iNET-3P – Data Sheet

- Measurement transducer for monitoring 3-phase 220-240 V 50 Hz power supply parameters
- Works in association with a supervising device: Hubiot-2
- Monitors active/reactive power and energy consumption and detects abnormal conditions in street lighting networks
- Requires standard industrial current transformers with 5 A output
- Equipped with RS485 interface and MODBUS protocol
- Suitable for the DIN TH35 (EN50022) mounting rail
- Reliability: MTTF > 400,000 h
- Warranty: up to 5 years

Part numbers

Version	Part number
Basic version	780010.001

Electrical parameters

Parameter	Symbol	Test conditions	Value	Unit
Supply				
AC supply voltage	U _{in}	-	220-240	V
Supply voltage frequency nom.	f _{in}	-	50	Hz
Power consumption max.	Pin	-	3	W
Environment				
Ambient temperaturę range	T _{amb}	-	-40+55	°C
Storage temperaturę range	T _{store}	-	-40+85	°C
Protection level	-	-	IP 20, IK06	-

Miscellaneous parameters

Parameter	Symbol	Test conditions	Value	Unit
Mass	-	-	210	g
MTTF	-	T _{amb} = 70°C , acc. Telcordia SR-332 Ed. 4	400,000	h
Warranty period up to	-	-	5	lat

Measured variables

Variable	Symbol	Resolution	Accuracy	Notes
Single phase active power	P ₁ , P ₂ , P ₃	1 W	Class B	The power is zeroed if the current is lower than the starting current I _{st}
Multiphase active power	Р	1 W	Class B	Arithmetic sum of the phase powers: P_1 , P_2 , i P_3
Single phase reactive power	Q ₁ , Q ₂ , Q ₃	1 var	Class 2	The power is zeroed if the current is lower than the starting current I_{st}
Multiphase reactive power	Q	1 var	Class 2	Arithmetic sum of the phase powers $ Q_1 , Q_2 , Q_3 $
Single phase active energy	E _{P1} , E _{P2} , E _{P3}	1 Wh	Class B	-
Multiphase active energy	E _P	1 Wh	Class B	-
Single phase reactive energy	E _{Q1} , E _{Q2} , E _{Q3}	1 varh	Class 2	-
Multiphase reactive energy	Eq	1 varh	Class 2	-
			1% of	For U ≥ 100 V
Phase voltage	U ₁ , U ₂ , U ₃	0.1 V	measured	If U < 100 V, the result is zeroed
			value	
			1% of	For I ≥ I _{min}
Phase current	I ₁ , I ₂ , I ₃	0.1 A	measured	1.5% of measured value if $I_{st} \le I < I_{min}$
			value	If $I < I_{st}$, the result is zeroed

Notes.

Definition of the currents is in accordance with the EN 50470-3 standard:

- Starting current I_{st} = 0.01 A * CT current ratio
- Minimum current I_{min} = 0.05 A * CT current ratio
- Transitional current (above that value, the meter achieves power and energy measurement accuracy of class B or 2)

 I_{tr} = 0.25 A \ast CT current ratio

Electric power measurement accuracy is in accordance with the EN 50470-3 standard and equals:

for $I \ge I_{tr}$:

- single phase active power: 1 %
- single phase reactive power: 2 %
- for $I_{min} \leq I < I_{tr}$:
- single phase active power (cosφ=1): 1.5 %
- single phase reactive power: 3 %

Measurement interfece port

The transducer is equipped with the RS485 interface working at the rate of 9600 bauds, in 8N1 format under the MODBUS RTU protocol. Two interface connectors (RJ9-type) are paralleled to simplify the creation of RS485 bus. The port needs to be powered by a supervising device with a dc voltage of approx. 12 V.

No.	Connector J13	Connector J14	Remarks
1	Power supply +12 V DC	Power supply +12 V DC	Power supplied by a supervising device
2	RS485 (A)	RS485 (A)	Communication
3	RS485 (B)	RS485 (B)	Communication
4	GND	GND	Power and reference ground for signals 1-3

Connector numbering and function

No.	Function
1	Neutral line N measurement input
2,3	Phase L1 current measurement input (2 – in, 3 – out)
4	Phase L1 voltage measurement input
5,6	Phase L2 current measurement input (5 – in, 6 – out)
7	Phase L2 voltage measurement input
8,9	Phase L3 current measurement input (8 – in, 9 – out)
10	Phase L3 voltage measurement input
11	Neutral line N for powering the transducer
12	Phase line L for powering the transducer
13,14	Paralleled RS-485 ports

Dimensions

Conformance to the standards

PN-EN 61000-6-3 PN-EN 61000-6-2 PN-EN 61000-3-2 PN-EN 61000-3-3 PN-EN 61010-1 RoHS 2 Directive